河南省2023-2024学年高三试卷11月联考(圆规 HEN)数学考试卷试卷答案,我们周报网收集并整理关于河南省2023-2024学年高三试卷11月联考(圆规 HEN)数学考试卷试卷答案得系列试题及其答案,更多试题答案请关注我们网站
河南省2023-2024学年高三试卷11月联考(圆规 HEN)数学考试卷试卷答案
以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
城市的供水量
不利影响:海洋水库水坝会减少营养物质向海洋输送,影响沿海生态环境;使潮汐作用减弱,水体交换不畅,可能加剧海洋污染
(4分)20.(1)空间特点:我国棉花产量重心和面积重心均向西北方向移动,主产区由(长江和黄河)流域棉区转为西北内陆棉区;产量重心迁移幅度大于面积重心迁移幅度
(2分)时间特点:2010~2015年产量和面积重心移动速率最大
(2分)(2)面积变化:减少
(1分)原因:工业化和城镇化的快速推进,土地利用结构调整(耕地面积减少):经济发展使得土地和劳动力成本提高,农业产业(种植)结构调整;降水较多导致病虫害多,品质较差;生产规模小,经济效益低
(任答三点,3分)(3)提高灌溉技术,发展滴灌、喷灌;合理开采地下水;加强农田水利工程建设;加强水资源管理,合理分配水资源;培育更耐旱的棉花品种
(任答四点,4分)案·58【23·G3DY(新教材老高考)·地理·参考答案一XJB一必考-一QG】
分析(1)由题意画出图象并求出A、B、C点的坐标,过A,B,C分别作AE、BF、CN垂直于x轴,垂足为E、F、N,
由图象、梯形的面积公式表示出△ABC的面积S△ABC,并利用对数的运算性质化简;
(2)由t>1和配方法化简t(t+4)并求出它的范围,再求出$\frac{1}{t(t+4)}$的范围和(t+2)2,代入S△ABC利用分离常数法化简,由a的范围、对数函数的性质求出函数S=f(t)的值域.
解答解:(1)如图:
A、B、C为函数y=logax(0<a<1)的图象上的三点,
由题意得它们的横坐标分别是t,t+2,t+4,
∴A(t,logat),B(t+2,loga(t+2)),C(t+4,loga(t+4)),
过A,B,C分别作AE、BF、CN垂直于x轴,垂足为E、F、N,
由图象可得,△ABC的面积S△ABC
=S梯形ABFE+S梯形BCNF-S梯形ACNE.
∵${S_{ABFE}}=-\frac{1}{2}[{{{log}_a}t+{{log}_a}(t+2)}]•[{(t+2)-t}]=-{log_a}[{t(t+2)}]$,${S_{BCNF}}=-\frac{1}{2}[{{{log}_a}(t+4)+{{log}_a}(t+2)}]•[{(t+4)-(t+2)}]=-{log_a}[{(t+4)(t+2)}]$,${S}_{ACNE}=-\frac{1}{2}[{log}_{a}t+{log}_{a}(t+4)]•[(t+4)-t]=-2lo{g}_{a}[t(t+4)]$,
∴S=f(t)=S梯形ABFE+S梯形BCNF-S梯形ACNE
=-loga[t(t+2)]-loga[(t+4)(t+2)]+2loga[t(t+4)]
=$-lo{g}_{a}\frac{{(t+2)}^{2}}{t(t+4)}(t>1)$
(2)由于当t>1时,t(t+4)=(t+2)2-4>5,
则$0<\frac{1}{t(t+4)}<\frac{1}{5}$,且(t+2)2=t(t+4)+4,
所以$\frac{{(t+2)}^{2}}{t(t+4)}$=$\frac{t(t+4)+4}{t(t+4)}$=1+$\frac{4}{t(t+4)}$,
由$0<\frac{1}{t(t+4)}<\frac{1}{5}$得,$0<\frac{4}{t(t+4)}<\frac{4}{5}$,
则$1<1+\frac{1}{t(t+4)}<\frac{9}{5}$,所以$1<\frac{{{{(t+2)}^2}}}{t(t+4)}<\frac{9}{5}$,
因为0<a<1,所以$lo{g}_{a}^{\frac{9}{5}}<lo{g}_{a}\frac{{(t+2)}^{2}}{t(t+4)}<0$,
即$0<-lo{g}_{a}\frac{{(t+2)}^{2}}{t(t+4)}<-lo{g}_{a}^{\frac{9}{5}}$,
所以S=f(t)的值域为$(0,-{log_a}\frac{9}{5})$.
点评本题考查了对数函数的图象以及性质,对数的运算性质,图象的面积表示,以及分离常数法、整体思想,数形结合思想,属于中档题.