安徽省2023年八年级万友名校大联考教学评价二数学考试卷

安徽省2023年八年级万友名校大联考教学评价二数学考试卷试卷答案,我们周报网收集并整理关于安徽省2023年八年级万友名校大联考教学评价二数学考试卷试卷答案得系列试题及其答案,更多试题答案请关注我们网站

试题答案

安徽省2023年八年级万友名校大联考教学评价二数学考试卷试卷答案

以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

第三部分语言知识运用(共两节,满分45分】第-节(共20小题:每小题1.5分,满分30分)阅读下面短文,从短文后各题所给的A,B.C和D四个选项中,选出可以填人空白处的最佳选项

PoetandwriterMayaAngeloudidnotspeakforfiveyearswhenshewasachild.Itwasalocal41whohelpedherregainhervoice.Thepatientteacher's42overtheyearschangedMayaAngelouandhasa(an)43throughoutherlife.Maya'sself--enforeed_44_beganafteratraumatic(造成创伤的)incident,whichcausedhertobelievethatherwordswouldbringbadluck.Herfamilyalsochosetonever45oftheincidentagain,soAngeloudidnot46thesupportandhelpsheneededduringthosefiveyears.Fortunately.afterMaya47hernewteacher,BerthaFlowers,everythingchanged.Bertha48Maya'sproblemandgaveherindividualattention.ShetoldyoungMaya,"Readingalotisgood.butnotgoodenough.Wordsmean49whatissetdownonpaper.It50onthehumanvoicetofillupdeepermeaning."Her51struckMayaandtheirrelationshipgrewasBertha52Mayawithnewbooksandincreasedhermotivationto53more,whichplantedaseedofliteratureinherheart.Although,foralongtime,youngMayaburiedherselfinthe54.sherejectedtoopenhermouth.BerthabrokethroughMaya'slongsilenceby55Mayathatshewasnotreallyinlovewithpoemsuntilshereadthemaloud.Maya,encouraged,readoutthefirstlinesandheardthepoemcomealivefromherown56.Eventually,attheageof13.Mayabeganspeakingagain,andherjoumeyinliteraturealsohadagood57."Ifeltacceptedandexpectedthen,andwhata(an)58myteacherhasmade!"saidMaya柳州布2023届高三华业班11月模拟统考试题:英语第9页(共12页)9/12

分析由已知求出|$\overrightarrow{a}$|=1,$\overrightarrow{a}•\overrightarrow{b}=cosx+xsinx$,代入投影数量公式得到f(x),求导后再借助于函数零点存在性定理得答案.

解答解:∵向量$\overrightarrow{a}$=(cosx,sinx),$\overrightarrow{b}$=(1,x),
∴|$\overrightarrow{a}$|=1,$\overrightarrow{a}•\overrightarrow{b}=cosx+xsinx$,
∴向量$\overrightarrow{b}$在$\overrightarrow{a}$上投影的数量f(x)=$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{a}|}=xsinx+cosx$.
∵x∈(-π,π),且f(-x)=-xsin(-x)+cos(-x)=xsinx+cosx=f(x),
∴f(x)为偶函数;
由f(x)=xsinx+cosx,得:
f′(x)=sinx+xcosx-sinx=xcosx,
当x∈(0,$\frac{π}{2}$)时,f′(x)>0,此时函数为增函数,
当x∈($\frac{π}{2},π$)时,f′(x)<0,此时函数为减函数.
∵f(0)=1>0,且f(π)=-1<0,
∴函数f(x)=xsinx+cosx在[0,π)上仅有一个零点.
由偶函数的对称性可知,在(-π,0)上f(x)=xsinx+cosx也有一个零点.
∴f(x)=xsinx+cosx是偶函数,且有两个零点.
故选:B.

点评本题考查平面向量的数量积运算,考查了向量在向量方向上投影的数量的求法,训练了利用导数研究函数的极值,是中档题.